Clique nas Imagens para Ampliar
Esta prova foi, segundo os alunos "à porta das urnas", mais difícil que a da primeira fase. Acreditamos que sim. Julgamos que a não inclusão de um exercício mais fácil e um outro muito difícil não contribui para uma verdadeira avaliação dos examinandos.
Neste exame todas as questões estão no mesmo patamar de grau de dificuldade, ou por serem casos particulares ou por todas as questões terem pelo menos um "grão de areia"
Julgamos muito mais correctas as provas do ano passado, verdadeiramente "progressivas" em termos de dificuladade.
Julgamos também que seria importante indicar aos examinandos se em determinados sólidos devem ser ou não assinaladas as invisibilidades, não dizer nada só serve para criar confusão desnecessária. (estamos a falar, concretamente da questão 3)
Questão 1
Determine as projecções da recta de intersecção, i, do plano oblíquo π com o plano passante θ.
Dados
– o plano π intersecta o eixo x no ponto com 5 de abcissa;
– os traços horizontal e frontal do plano π fazem, respectivamente, ângulos de 50º e de 30º, ambos de abertura para a direita, com o eixo x;
– o plano θ é definido pelo eixo x e pelo ponto P (0; 3; 6).
Este exercício foi amplamente trabalhado no bloco I.
Optamos por colocar duas rectas ("p" e "n"), uma de cada plano (neste caso ambas de nível), coincidentes na projecção frontal, a concorrência delas dá-nos o segundo ponto comum aos dois planos.
Nota 1: Nos critérios atribui-se 1 ponto à identificação dos traços de teta, no entanto tal não é solicitado no enunciado
Nota 2: No processo de resolução consideramos redundante a utilização de um "plano auxiliar", conforme demonstra esta resolulção tal plano não é necessário.
Questão 2
Determine, graficamente, a verdadeira grandeza da distância entre dois planos paralelos, α e β.
Dados
– o traço frontal do plano α intersecta o eixo x no ponto com –10 de abcissa e faz um ângulo de 60º, de abertura para a esquerda, com esse mesmo eixo;
– o plano β contém os pontos M (6; 2; 3) e N (10; 7; –3).
Para determinarmos a distância entre os dois planos paralelos, bastou fazer passar por um ponto (P) do plano beta, uma recta ortogonal ao plano alfa. Encontrada a intersecção dessa recta com o plano alfa obtemos a distância revelada no segmento [P I]. A V.G. foi obtida por uma rotação.
Questão 3
Represente, pelas suas projecções, uma pirâmide quadrangular regular, situada no 1.º diedro, de acordo com os dados abaixo apresentados.
Dados
– a base [ABCD] está contida no plano oblíquo δ, que cruza o eixo x no ponto com 3 de abcissa;
– os traços, horizontal e frontal, do plano δ fazem, respectivamente, ângulos de 40º e 50º, ambos de abertura para a direita, com o eixo x;
– as diagonais da base medem 10 cm;
– o ponto A (1; 8) e o ponto C, que pertence ao traço horizontal do plano δ, definem a diagonal [AC];
– a pirâmide tem 12 cm de altura.
Este problema deu bastante trabalho.
Foi feito um primeiro rebatimento do plano oblíquo para determinar as projecções da base do sólido.
Colocou-se o eixo da pirâmide perpendicular ao plano da base, contendo o seu centro.
Foi ainda necessário rodar o eixo anterior de forma a poder aplicar o valor da alura do sólido.
No enunciado não havia qualquer referência acerca das invisibilidades, julgo portanto, que serão consideradas totalmente correctas as soluções que incluem e as que não incluem as indicações das arestas invisíveis.
Nota 1: Nos critérios atribuem 2 pontos à representação do traço frontal do plano, no entanto não só ão é solicitado como não é necessário segundo esta proposta de resolução.Nota 2: Nos critérios atribuem 4 pontos às invisibilidades mas tal não é solicitado em lado algum.
Questão 4
Construa uma representação axonométrica ortogonal de uma forma tridimensional composta por dois prismas regulares, de acordo com os dados abaixo apresentados.
Ponha em destaque, no desenho final, apenas o traçado das arestas visíveis do sólido resultante.
Dados
Sistema axonométrico: – dimetria:
a projecção axonométrica do eixo y faz 130º com a dos eixos x e z.
Nota: Considere os eixos orientados em sentido directo: o eixo z, vertical, orientado positivamente, de baixo para cima, e o eixo x, orientado positivamente, da direita para a esquerda.
Prisma quadrangular regular:
– a base [RSTU] é paralela ao plano coordenado horizontal xy;
– os pontos R (7; 9; 8) e S (7; 5; 8) definem uma aresta comum a essa base e à face de maior abcissa;
– a outra base está contida no plano coordenado horizontal xy.
Prisma hexagonal regular:
– as bases são paralelas ao plano coordenado frontal zx;
– o quadrado [RSTU] representa a face de menor cota deste prisma.
Esta questão parece-nos já familiar, consulte o teste 3.2 aqui
Nesta solução não rebatemos o par de eixos XZ já que se tratava de uma dimetria e ... não ficaria muito bem na nossa pequena folha A4. Na folha de exame havia espaço suficiente pelo que o rebatimento de 2 pares de eixos seria o processo mais comum.
Optamos portanto por determinar o centro das bases do prisma hexagonal recorrendo a um triângulo determinado no par de eixos XY em rebatimento.
Como exemplo de "economia de recursos" pensamos que os critérios de classificação deveriam ponderar esta questão.