Mostrar mensagens com a etiqueta 2.3 Rebatimento plano oblíquo. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta 2.3 Rebatimento plano oblíquo. Mostrar todas as mensagens

3 de setembro de 2020

Exame 2020 - 2.ª fase - Item 2 (proposta de resolução)

Determine as projeções de um hexágono regular [ABCDEF], pertencente a um plano de rampa ρ, e da sua sombra projetada nos planos de projeção. 

Destaque, a traço mais forte, as projeções do hexágono e o contorno visível da sua sombra projetada. Identifique, a traço interrompido forte, o contorno invisível da sua sombra projetada.

Identifique as áreas visíveis da sombra projetada, preenchendo-as a tracejado ou com uma mancha de grafite clara e uniforme. 

Nota – Se optar pelo tracejado, deverá fazê-lo com linhas perpendiculares às projeções da direção luminosa, nas áreas de sombra projetada. 

Dados: 

− a reta de perfil do plano ρ, com 7 de abcissa, contém a diagonal maior [AD] do hexágono; 

− o vértice A, com 5 de cota, pertence ao Plano Frontal de Projeção, e o vértice D, com 8 de afastamento, pertence ao Plano Horizontal de Projeção; 

− a direção luminosa é a convencional


17 de julho de 2013

Proposta de Resolução Exame Nacional 2013 - 2.ª fase - Q3





Determine a sombra própria e a sombra projetada nos planos de projeção de um cilindro oblíquo, de bases circulares situadas em planos frontais, e situado no 1.º diedro.
Destaque, a traço mais forte, as projeções do cilindro e o contorno da sua sombra projetada nos planos de projeção.
Identifique, a traço interrompido, as linhas invisíveis, quer no sólido, quer na parte ocultada do contorno da sua sombra projetada nos planos de projeção.
Identifique as áreas visíveis das sombras, própria e projetada, preenchendo-as a tracejado ou com uma mancha de grafite clara e uniforme.
Nota – Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às projeções da direção luminosa, nas áreas de sombra projetada.
Dados
o ponto O (0; 4; 7,5) é o centro da circunferência com 3,5 cm de raio de uma das bases do cilindro;
as geratrizes do cilindro são horizontais e fazem um ângulo de 60°, de abertura para a direita, com o Plano Frontal de Projeção;
a outra base do cilindro pertence ao Plano Frontal de Projeção;
a direção luminosa é a convencional
 

Encontramos a sombra do ponto “o” no plano frontal de projeção (paralelo às bases), encontrando assim a sombra da base de maior afastamento.

Como a outra base está no plano frontal de projeção a sombra projetada nesse plano é ela própria.

Unindo a sombra dos dois centros das bases encontramos a direção da sombra das geratrizes que pertencem à separatriz bem como os pontos de t e t´ no diâmetro que lhe é perpendicular.

Todos os dados foram encontrados, o resto é pura cosmética :-)

Para evitar descontos relativos às notações, represente as letras t e t´ bem como a sombra de o´.

12 de dezembro de 2012

GDA II - Teste 1.3 - Triângulo situado num Plano Oblíquo

Desenhe as projeções de um triângulo equilátero [ABC], pertencente a um plano oblíquo a.
- o plano a é perpendicular ao plano bissetor dos diedros pares, b24, e o seu traço frontal faz 60º ad
- o vértice “A” tem 2 de afastamento e o vértice “B” tem 6 de cota e ambos pertencem ao bissetor dos diedros ímpares, b13
- o vértice C é o de menor cota

5 de novembro de 2012

GDA II - Teste 1.1


      1.     Determine os traços do plano b, que contém os pontos P e R e é perpendicular ao plano a.
- o plano a contém o ponto A (3; 6; 4) e uma recta horizontal h
- a recta h tem 8 de cota, faz, com o Plano Frontal de Projecção, um ângulo de 50º com abertura para a direita, e o seu traço frontal Fh tem 6 de abcissa.
- o plano b contém os pontos P (0; 2; 4) e R (-5; 0; 0)

 
       2.     Determine a verdadeira grandeza da distância entre a reta “r” e o plano a
        A recta “r” é paralela ao pano a , contém o ponto R (-3; 3; 2) e a sua projecção frontal faz 45º ad com o eixo dos X.
O plano a contém o ponto do eixo dos X com 11 de abcissa. O seu traço horizontal faz 60º ad com o eixo dos X e o seu traço frontal faz 30º ad com o mesmo eixo.
                 (deve representar todos os dados, nomeadamente as projeções da reta r e os traços do plano a )

      3.     Desenhe a verdadeira grandeza de um triângulo [ABC], contido num plano oblíquo q.
      Os traços horizontal e frontal do plano qfazem, respetivamente com o eixo x, ângulos de 60º e 45º, ambos com abertura para a direita e intersectam-se na origem das coordenadas.
       O vértice A situa-se no traço frontal do plano e tem 2 de cota
      O vértice B tem 6 de afastamento e 2 de cota.
      O vértice C tem 2 de afastamento e 6 de cota

 

22 de junho de 2012

Exame 2012 - 1ª fase - Resolução - Item 2

Para aceder ao PDF do processo de resolução clique na imagem

Determine, graficamente, a amplitude do ângulo entre a reta horizontal h e o plano ω.
    o plano ω está definido por uma das suas retas de maior declive d;
    o traço horizontal da reta d tem 4 de abcissa e 2 de afastamento;
    a projeção horizontal da reta d faz um ângulo de 30º, de abertura para a direita, com o eixo x;
    o traço frontal da reta d tem – 4 de cota;
    a reta h contém o ponto P (0; –1; 7) e faz um ângulo de 50º, de abertura para a direita, com o Plano Frontal de Projeção.

6 de novembro de 2011

Teste GDA II - 1.1 - 11.º 12

1.     Represente o ponto “I” de intersecção da reta r com o plano a
O plano a é definido pela sua reta de maior declive d que contém os pontos C(-10;1;5) e D(-7;7;2)
A reta r contém o ponto R (0;2;4) e é paralela ao plano q e ao bissetor dos diedros ímpares b13
O plano q contém o ponto Q (10;4;2) e os seus traços, horizontal e frontal, fazem respetivamente ângulos de 55º e 35º, ambos com abertura à esquerda.

2.     Determine a verdadeira grandeza da distância entre o ponto P(3;6;9) e o plano a,
O plano a contém o ponto A(-3;3;3), é perpendicular ao bissetor dos diedros impares b13 e o seu traço horizontal faz um ângulo de 45º ad com o eixo “x”

3.     Represente as projeções de um cubo situado no 1.º diedro com a face [ABCD] contida no plano oblíquo q. (foi alterado para apenas o quadrado da face)
Os traços horizontal e frontal do plano q fazem, respetivamente com o eixo x, ângulos de 60º e 45º, ambos com abertura para a direita e intersectam-se na origem das coordenadas.
O vértice A situa-se no traço frontal do plano e tem 2 de cota

O vértice B tem cota nula e 6 de afastamento.

2 de novembro de 2011

Teste GDA II - 1.1 - 11.º 13


1.     Represente a reta “i” de intersecção do plano a com o plano bissetor dos diedros pares b24.
O plano a contém o ponto A(2;5;2) e é paralelo ao plano q.
O plano q é definido pela sua reta de maior declive d que contém os pontos C(-10;1;4) e D(-7;7;2)

2.     Determine a verdadeira grandeza da distância entre a reta “r” e o plano a,
O plano a contém o ponto A(-3;3;3) es os seus traços, horizontal e frontal, fazem respetivamente ângulos de 45º ad e 30º ad
A reta “r” contém o ponto R(4;8;8), é paralela ao plano a e ao plano bissetor dos diedros ímpares b13
(deve representar todos os dados, nomeadamente as projeções da reta r e os traços do plano a)

3.     Desenhe as projeções de um triângulo equilátero [ABC], contido num plano oblíquo b.
Os traços horizontal e frontal do plano b fazem, respetivamente com o eixo x, ângulos de 60º e 45º, ambos com abertura para a direita e intersectam-se na origem das coordenadas.
O vértice A situa-se no traço frontal do plano e tem 2 de cota

O vértice B tem cota nula e 6 de afastamento.
Resoluções de David Gonçalves

30 de junho de 2011

Resolução Questão 2 - Exame 2011 fase1

Como as rectas são concorrentes basta rebater o plano que as define:
Já que nos forneceram o traço horizontal da recta de perfil, bastou achar o traço horizontal da outra recta para definir um eixo horizontal de cota nula (traço horizontal do plano) e efectuar o rebatimento do ponto comum às duas rectas.
Clique nas imagens para visualizar

PDF com os passos da resolução e cotações. Clique Aqui para Importar

Resolução Questão 3 - Exame 2011 fase1

Cá está a pequena e única "areia" deste exame, forneceram um vértice "A" de uma base e o centro da outra "O´" e claro as direcções dos traços dos planos das bases (h 40ºad e perpendicular ao beta 13)

Após representar "A", "O´" e os traços do plano da base ABC foi necessário passar em "O´" uma recta perpendicular ao plano e encontrar a intersecção entre eles, o ponto "O", centro da base ABC.

O resto foi fácil mas trabalhoso, rebater A e O para VG, representar o triângulo equilátero, contra-rebater e representar as bases que distam entre elas o mesmo que a distância entre os centros das bases

Clique nas imagens para visualizar  ou PDF . Clique Aqui para Importar