Mostrar mensagens com a etiqueta - Teoria -. Mostrar todas as mensagens
Mostrar mensagens com a etiqueta - Teoria -. Mostrar todas as mensagens

6 de dezembro de 2013

Sombra de uma Pirâmide Hexagonal Oblíqua

Enunciado da Prova 1.2

Determine a sombra própria e projetada nos planos de projeção de uma pirâmide hexagonal oblíqua.
A base do sólido é horizontal e contém os vértices consecutivos A(6;3;5) e B(1;2;5)
A aresta lateral BV é de perfil e é paralela ao plano bissetor dos diedros ímpares b13
A altura do sólido é 6

 

7 de março de 2013

GDA I - Teste 2.2 - Interseção reta / plano


Representa as projeções do ponto “I” de interseção da reta “r” com o plano alfa
O plano alfa contém as retas n e f concorrentes no ponto A(0;4;4).
A reta n é horizontal e faz um ângulo de 30º ae com o PFp
A reta f é frontal e faz um ângulo de 45º ae com o PHp
A reta “r” é passante, contém o ponto R(5;1:4) e concorre com o eixo do x num ponto com 8 de abcissa

PDF da resolução

GDA I - Teste 2.2 - Pentágono num plano de topo



Enunciado

Representa um pentágono situado num plano de topo sabendo:

O centro é o ponto O(3;5;4) e um dos seus vértices é o ponto A(0;4;1)

PDF da resolução

GDA I - Teste 2.2 - Cubo com face vertical

Enunciado


Coloca a folha na posição “retrato” e a origem das coordenadas exatamente no seu centro

Representa as projeções ortogonais de um cubo cuja face ABCD se situa num plano vertical

Os vértices A (2;1;6) e B(5;4;1) formam uma aresta da face contida no referido plano vertical.


PDF da resolução

5 de março de 2013

GDA II - Teste 2.2.3 - Projeção Axonométrica Clinogonal

PDF interativo
A origem das coordenadas deve situar-se aproximadamente no centro de uma folha de papel A4 posicionado em “paisagem”

Representa a projeção axonométrica clinogonal de uma pirâmide quadrangular regular situada no primeiro diedro de acordo com os seguintes dados:

Sistema Axonométrico : Militar (Planométrica)
O eixo dos x forma um ângulo de 125º com o eixo dos z
A inclinação das projetantes é de 60º com o plano axonométrico.

A base do sólido é um quadrado situado num plano horizontal.
Os pontos A(2;0;2) e B(8;0;2) são extremos de um lado da base.
A altura do sólido é 8

GDA II - Teste 2.2.2 - Projeção Axonométrica Ortogonal

PDF interativo
A origem das coordenadas deve situar-se a 11cm da margem esquerda e a 7 cm da margem inferior de um papel A4 posicionado em “paisagem”

Representa a projeção axonométrica ortogonal de um cubo, situado no primeiro diedro, com a face [ABCD] situada no plano yz

Sistema Axonométrico: Dimetria
O eixo dos “z” forma ângulos de 110º com os restantes eixos axonométricos.

Vértice A (1;3)
Vértice B (8;1)

GDA II - Teste 2.2.1 - Paralelismo e Perpendicularidade

PDF interativo

Em sistema diedrico, representa as projeções da reta “r” que contém o ponto “R”, é ortogonal à reta “a” e paralela ao plano alfa

O plano alfa contém o ponto A(3;2;3) e os seus traços, horizontal e frontal, fazem como eixo dos x, respetivamente, ângulos de 60º e 30º ambos com abertura para a direita.

A reta “a” tem as suas projeções coincidentes com os traços homónimos do plano alfa
 
O ponto "R" pertence ao eixo dos "x" e tem -6 de abcissa

Este exercício é de elevada complexidade, obrigando a uma conjugação de conceitos muito elaborada.
Na resolução optou-se por conjugar a interseção de dois universos.
1 - Um plano teta perpendicular à reta "a" define um universo possível para a existência da reta "r" já que qualquer reta desse plano é ortogonal à reta "a"
2 - A interseção do plano teta com o plano alfa gera uma reta do plano alfa, obtendo assim a direção necessária para estabelecer o paralelismo para com esse plano alfa mantendo a ortogonalidade com a reta "a".
Assim, a reta "r" sendo paralela à reta "i" de intersecção dos dois planos garante a ortogonalidade com a reta "a" já que existe num plano perpendicular a ela e também garante o paralelismo com o plano alfa, já que é paralela à reta "i" contida nesse plano. (repare que a reta "r" pertence ao plano teta porque contém o ponto "R" e é paralela a uma reta "i" desse plano)

9 de novembro de 2012

Sombras de Sólidos









Relação Reta / Plano

As retas que pertencem a um mesmo plano são Concorrentes ou Paralelas.
Para colocar uma reta num plano ela deve conter 2 pontos desse plano (ou conter um ponto do plano e ser paralela a uma reta conhecida do plano)

Pontos notáveis da Reta


A reta tem alguns "pontos notáveis".
O ponto de cota nula e o ponto de afastamento nulo são os mais importantes neste momento.
Eles, o H e o F, permitem perceber o momento em que a reta sai de um diedro e passa para outro, são os pontos "fronteira"
Estes pontos, H e F, vão ser muito importantes para a relacionar com o plano (na forma elementar)

Relação Ponto / Reta

Um ponto está numa reta se as projeções do ponto estiverem sobre as projeções da reta em todas as projeções. (A1 sobre a1 e A2 sobre A2)

8 de fevereiro de 2012

Rebatimentos de Planos Projetantes - Figura Plana

Represente pelas suas projeções um Pentágono [ABCDE]
situado num Plano Vertical, com Centro no ponto O (-2;5;5) e vértice A(0;1;4)



Para aceder ao modelo interativo clique na imagem.

Esta exemplificação interativa do rebatimento de um plano vertical como método auxiliar para representar um pentágono numa determinada posição foi elaborada pelo professor Pedro Sousa.

1 de dezembro de 2011

4 de agosto de 2011

Exame 2011 1.ª fase - Resolução alternativa

Para além das 4 soluções que consegui encontrar para esta Questão 1 venho aqui apresentar a quinta solução possível e que, acreditem, nem é necessário encontrar a projecção frontal da recta "b".

Nesta proposta foram identificadas 2 rectas do plano delta e colocadas 2 rectas paralelas às anteriores a passar no ponto "P".

As 2 rectas que passam em "P" definem um plano paralelo ao plano delta. (logo todas as rectas desse plano são paralelas a delta)

Determinamos a recta (i) de intersecçaõ desse plano com o bissector dos diedros pares ... fácil .... basta procurar os pontos dessas rectas que resultam do cruzamento das projeções (frontal e horizontal) em ambas as rectas, conseguindo dessa forma 2 pontos comuns ao plano delta  e ao beta 24 e representando a recta que os une (com projecções coincidentes  .. claro).

Como sabemos à partida que o ponto "I" tem as projecções coincidentes basta encontrar o cruzamento da recta anterior com a projecção horizontal da recta "b", ou seja b1 com i1
Desta forma o ponto "I" é do beta 24 e pertence à recta "b" já que se situa num plano paralelo a delta e a sua projecção 1 se situa sobra b1.

Reparem que nesta solução não é representada a recta "b" (mas apenas a sua projecção horizontal) e no entanto é identificada a intersecção dessa recta "b" com o bissector dos diedros ímpares.

Para ajudar à compreensão desta solução resolvi em PDF com layers para que possam seguir os passos: Aqui