Enunciado Versão A
Enunciado Versão B
1. Determine a distância d entre os planos paralelos a e b.
- o plano a contém uma reta horizontal, n, que intersecta o plano frontal de projeção no ponto Fn (0; 0; 8) e cuja projeção horizontal faz um ângulo de 60º (de abertura a direita) com o eixo x;
- o plano b contém uma reta obliqua b, cujos traços nos planos de projeção são os pontos Hb (3; 4; 0) e Fb (-3; 0; 6).
2. Desenha as projeções de um quadrado [ABCD], pertencente a um plano oblíquo a.
- o centro do quadrado é o ponto O (-6; 3; 3,5)
- os traços do plano fazem, ambos, ângulos de 45º(abertura para a direita) com o eixo x
- uma das diagonais é frontal
- o vértice A está no plano frontal de projeção
3. Represente um cone de revolução de base frontal, situado no 1º diedro, de acordo com os dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a sombra própria do cone e a sua sombra real projetada nos planos de projeção.
Represente, a traço interrompido, as partes invisíveis da separatriz e do contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite clara e uniforme
- a base tem centro no ponto 0 (3; 2,5; 7) e 3 cm de raio;
- o vértice V do cone tem 10 de afastamento.
3. Represente uma pirâmide triangular regular, de vértice V, situada no 1º diedro e com a base [ABC] paralela ao plano frontal de projeção, de acordo com os dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a sombra própria da pirâmide e a sua sombra real projetada nos planos de projeção.
Represente a traço interrompido as arestas invisíveis e a parte invisível do contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite clara e uniforme
- o vértice A tem -3,5 de abcissa, 7 de afastamento e 1 de cota;
- o vértice V pertence ao plano frontal de projeção, tem abcissa nula e 4 de cota.
4. Represente pelas suas projeções um cilindro de revolução, de acordo com os dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a sombra própria do cilindro e a sua sombra real nos planos de projeção.
Identifique, a traço interrompido, a parte invisível da linha separatriz de luz/sombra do sólido, na sombra própria, e as partes ocultadas do contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite, clara e uniforme.
- as bases são frontais;
- o ponto O (4; 8; 7) é o centro de uma das bases;
- a base de centro O’ tem 2 de afastamento;
- o raio das bases mede 4 cm
4. Represente um cubo, situado no 1º diedro, de acordo com os dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a sombra própria do cubo e a sua sombra real projetada nos planos de projeção.
Identifique, a traço interrompido, as arestas invisíveis e a parte invisível do contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite clara e uniforme
- a face [ABCD] do cubo é paralela ao plano horizontal de projeção;
- os pontos A e B são dois vértices consecutivos da face [ABCD];
- o vértice A tem abcissa nula, 5 de afastamento e 2 de cota;
- o vértice B tem 4 de abcissa e 3 de afastamento.