25 de Fevereiro de 2014

Distância Ponto / Reta (de perfil)



Determine graficamente a distância do ponto A (6;6;6) à reta de perfil "p" 


As reta de perfil "p" contém o ponto P(0;3;3) e intersecta o plano horizontal de projeção no ponto "Hp" com 8 de afastamento.

(para permitir mais alternativas de resolução coloque a folha na posição "retrato" e o eixo do x a cerca de 10cm do topo da folha)

Ângulo Reta / Plano


Determine a amplitude do ângulo a formado entre a reta "m" e o plano b

A reta "m" contém o ponto M(4;5;5) e a origem das coordenadas.


O plano b contém o ponto B(-5;3;4) e os seus traços, horizontal e frontal, fazem respetivamente ângulos de 65ºad e 80ºad com o eixo do x (ambos com abertura à direita)

24 de Fevereiro de 2014

Secção de Pirâmide por Plano de Rampa.


Determine a secção de uma pirâmide hexagonal oblíqua por um plano a

Evidencie, a traço forte, a parte do sólido truncado, compreendido entre o plano secante e os planos de projeção. 

A base do sólido é horizontal e contém os vértices consecutivos A(7;1;2) e B(2;2;2)
A aresta lateral AV é de perfil e é paralela ao plano bissector dos diedros ímpares b13 
A altura do sólido é 6

O plano secante a é de rampa, o seu traço horizontal tem 11 de afastamento e o seu traço frontal tem 8 de cota.
(como é obvio, o eixo do x deve situar-se a mais de 11cm do lado inferior da folha)

Ponto Reta Plano. (direções notáveis do plano)

O plano alfa é contém o ponto A(0;4;3) e as suas direções, horizontal e frontal, fazem respetivamente ângulos de 30º ad e 60º ad, (ambos com abertura à direita), com o eixo do x

- Represente os seus traços nos planos de projeção (ou seja, a reta de cota nula e a reta de afastamento nulo)

- Determine as projeções do ponto “P”, com 6 de afastamento e 8 de cota e pertence a esse plano alfa



Ponto Reta Plano (intersecções com os bissectores)

O plano beta é definido por duas retas paralelas, a e b.

A reta a contém o ponto A(4;5;2) e o seu traço frontal é o ponto Fa com 7 de abcissa e -2 de cota. (atenção cota negativa)
A reta b contém o ponto B(-3;1;4)

- Represente uma reta horizontal “n”, com 5 de cota, pertencente ao plano beta

- Determine as retas q e i de intersecção do plano beta com os planos bissetores, respetivamente beta13 e beta24

Intersecção de Planos

Determine a reta i de intersecção entre os planos alfa e beta.

O plano alfa é de rampa, contém o ponto A(5;6:3) e o seu traço frontal tem 8 de cota.

O plano beta contém o ponto B(-4;3;6) e a reta “n”.
A reta “n” é horizontal, contem o ponto N(-6;3;3) e faz um ângulo de 45º ae com o plano frontal de projeção.

Intersecção Reta Plano (reta de maior inclinação)

Determine o ponto “I” de intersecção entre a reta “m” e o plano teta

O plano teta é definido pela sua reta de maior inclinação i,

A reta “i” contém o ponto Q(6;3;3) e o seu traço horizontal tem 3 de abcissa e 6 de afastamento.

A reta “m” é paralela ao eixo do x, tem 8 de afastamento e 7 de cota.

21 de Dezembro de 2013

Informações Exames 2014 - Gave

Foram divulgadas as informações para os próximos exames nacionais.

Consulte : Informações Exames 2014 - Gave

1.ª fase: 27 de junho 9:30
2.ª fase: 18 de Julho 9:30

O documento com as informações relativas à disciplina de Geometria Descritiva A foi copiado para aqui, não vá ele desaparecer da fonte oficial :-)

6 de Dezembro de 2013

Sombra de uma Pirâmide Hexagonal Oblíqua

Enunciado da Prova 1.2

Determine a sombra própria e projetada nos planos de projeção de uma pirâmide hexagonal oblíqua.
A base do sólido é horizontal e contém os vértices consecutivos A(6;3;5) e B(1;2;5)
A aresta lateral BV é de perfil e é paralela ao plano bissetor dos diedros ímpares b13
A altura do sólido é 6

 

3 de Dezembro de 2013

17 de Julho de 2013

Exame GDA 2.ª fase - Enunciado - Critérios - Proposta de Correcção


Enunciado da Prova 
Critérios de Classificação
Proposta de Resolução PDF (à escala)




Enunciado da Prova (link alternativo)
Critérios de Classificação (link alternativo)

Proposta de Resolução Exame Nacional 2013 - 2.ª fase - Q1



Determine as projeções da reta passante s, perpendicular à reta r no ponto A.


Dados
− a reta r é passante e está definida pelo ponto A com 2 de abcissa e 3 de cota e pelo ponto B do eixo x com 7 de abcissa;
− a projeção horizontal da reta r faz um ângulo de 50°, de abertura para a direita, com o eixo x.


 

Pelo ponto “A” passamos uma reta horizontal “n” perpendicular à reta “r”
Colocamos um plano teta contendo a reta anterior (n) e também ele perpendicular à reta “r”
Todas as retas do plano teta são ortogonais à reta “r”, as que passam em "A" são perpendiculares a "r"
Como se pretendia uma reta “s” passante bastou encontrar o ponto do plano teta que pertence ao eixo dos “x” que, conjuntamente com o ponto “A” definem a reta “s” pretendida


Como se pretendia uma reta “s” passante perpendicular a uma “r” também passante, logo consideramos um plano passante.
Assim, rebatemos (ou melhor, rodamos) esse plano levando o ponto “A” e a reta ”r” para o plano frontal de projeção.
Com estamos, agora, em verdadeira grandeza, podemos fazer passar a reta “s” pelo ponto “A” perpendicularmente à reta “r” (em verdadeira grandeza, claro)
Encontramos assim o ponto do eixo do “x” da reta “s”, e como este se situa na charneira, acaba por ser válido também para as projeções, definindo ele próprio, com o ponto “A” a pretendida reta “s”
___________
Sobre os critérios de classificação:
Não sei o que vale uma das projeções de uma reta perpendicular em "A" à reta "r" sem a representação da outra projeção. É mesmo um "nosense" se as projeções dessa reta forem ambas perpendiculares às projeções da reta "r" deveriam ser cotadas as duas projeções, apenas uma ou nenhuma ? (na minha vontade nenhuma já que a reta não é realmente perpendicular)

Proposta de Resolução Exame Nacional 2013 - 2.ª fase - Q2



Determine, graficamente, a amplitude do ângulo formado pelos planos δ e θ.
Dados
o plano δ é vertical, contém o ponto M do eixo x com –3 de abcissa e faz um ângulo de 60°, de abertura para a direita, com o Plano Frontal de Projeção;
o plano θ é de topo, contém o ponto N do eixo x com 3 de abcissa e faz um ângulo de 60°, de abertura para a esquerda, com o Plano Horizontal de Projeção.



Por um ponto (qualquer) “A” passamos uma reta horizontal “n” perpendicular ao plano delta e uma segunda reta frontal “f” perpendicular ao plano teta.
Para evitar que nos venham falar de “falta de notações” em vez de rebater optamos por rodar o ponto “H” da reta “f” em torno da reta “n” para uma posição de cota igual à mesma reta tornando assim o ângulo na sua posição de verdadeira grandeza.

Claro que rebater é exatamente o mesmo que rodar, mas há quem sinta a necessidade da representação de um plano :-) no primeiro caso


Nesta proposta optamos por representar um plano alfa perpendicular aos dois planos delta e teta.
Encontramos as retas “a” e “b”  resultantes da intersecção desse plano alfa com os anteriores.
Rebatemos o plano alfa conjuntamente com as retas “a” e “b” obtendo assim a verdadeira grandeza do ângulo ou melhor, da amplitude do diedro … ou melhor, … desta o pedido foi mesmo a amplitude do ângulo :-) Ok.