17 de julho de 2013

Proposta de Resolução Exame Nacional 2013 - 2.ª fase - Q2



Determine, graficamente, a amplitude do ângulo formado pelos planos δ e θ.
Dados
o plano δ é vertical, contém o ponto M do eixo x com –3 de abcissa e faz um ângulo de 60°, de abertura para a direita, com o Plano Frontal de Projeção;
o plano θ é de topo, contém o ponto N do eixo x com 3 de abcissa e faz um ângulo de 60°, de abertura para a esquerda, com o Plano Horizontal de Projeção.



Por um ponto (qualquer) “A” passamos uma reta horizontal “n” perpendicular ao plano delta e uma segunda reta frontal “f” perpendicular ao plano teta.
Para evitar que nos venham falar de “falta de notações” em vez de rebater optamos por rodar o ponto “H” da reta “f” em torno da reta “n” para uma posição de cota igual à mesma reta tornando assim o ângulo na sua posição de verdadeira grandeza.

Claro que rebater é exatamente o mesmo que rodar, mas há quem sinta a necessidade da representação de um plano :-) no primeiro caso


Nesta proposta optamos por representar um plano alfa perpendicular aos dois planos delta e teta.
Encontramos as retas “a” e “b”  resultantes da intersecção desse plano alfa com os anteriores.
Rebatemos o plano alfa conjuntamente com as retas “a” e “b” obtendo assim a verdadeira grandeza do ângulo ou melhor, da amplitude do diedro … ou melhor, … desta o pedido foi mesmo a amplitude do ângulo :-) Ok.

Proposta de Resolução Exame Nacional 2013 - 2.ª fase - Q3





Determine a sombra própria e a sombra projetada nos planos de projeção de um cilindro oblíquo, de bases circulares situadas em planos frontais, e situado no 1.º diedro.
Destaque, a traço mais forte, as projeções do cilindro e o contorno da sua sombra projetada nos planos de projeção.
Identifique, a traço interrompido, as linhas invisíveis, quer no sólido, quer na parte ocultada do contorno da sua sombra projetada nos planos de projeção.
Identifique as áreas visíveis das sombras, própria e projetada, preenchendo-as a tracejado ou com uma mancha de grafite clara e uniforme.
Nota – Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às projeções da direção luminosa, nas áreas de sombra projetada.
Dados
o ponto O (0; 4; 7,5) é o centro da circunferência com 3,5 cm de raio de uma das bases do cilindro;
as geratrizes do cilindro são horizontais e fazem um ângulo de 60°, de abertura para a direita, com o Plano Frontal de Projeção;
a outra base do cilindro pertence ao Plano Frontal de Projeção;
a direção luminosa é a convencional
 

Encontramos a sombra do ponto “o” no plano frontal de projeção (paralelo às bases), encontrando assim a sombra da base de maior afastamento.

Como a outra base está no plano frontal de projeção a sombra projetada nesse plano é ela própria.

Unindo a sombra dos dois centros das bases encontramos a direção da sombra das geratrizes que pertencem à separatriz bem como os pontos de t e t´ no diâmetro que lhe é perpendicular.

Todos os dados foram encontrados, o resto é pura cosmética :-)

Para evitar descontos relativos às notações, represente as letras t e t´ bem como a sombra de o´.