10 de maio de 2012

Questão Tipo 4 - Projeção axonométrica

4. Construa uma representação axonométrica ortogonal do sólido resultante da justaposição de um prisma triangular regular e uma pirâmide triangular oblíqua.

        Evidencie, a traço forte, apenas as arestas visíveis do sólido resultante.

Dados
Sistema axonométrico:- Dimetria

A projecção axonométrica do eixo “X” forma um ângulo de 110º com os restantes eixos axonométricos

(considere o eixo dos Z orientado positivamente para cima, o eixo dos X orientado positivamente para a esquerda e o eixo dos Y orientado positivamente para a direita)

Sólidos:

-   Os dois sólidos têm a mesma altura e bases regulares (triângulos equiláteros) situadas num plano horizontal (paralelo ao plano xy)

Prisma triangular regular:

-  O prisma tem uma base situada no plano coordenado xy

-  A outra base contém os vértices A(1;3;4) B(8;1;4)
Pirâmide triangular oblíqua:

-  A pirâmide tem duas arestas da sua base situadas nas arestas da base de maior cota do prisma.

-  O vértice principal da pirâmide situa-se na mesma reta vertical que contém o ponto “A”. (reta vertical é perpendicular ao plano xy e paralela ao eixo “Z”)

-  As três faces laterais da pirâmide são triângulos isósceles.

1 de abril de 2012

10 de fevereiro de 2012

Calendário de Exames Nacionais 2012

(a informação aqui prestada não dispensa a consulta da legislação pelos meios oficiais)

Exames Finais Nacionais e Provas de Equivalência à Frequência do Ensino Secundário 
19 — Os exames finais nacionais têm lugar em duas fases a ocorrerem em junho e julho. A 1.ª fase dos exames finais nacionais dos 11.º e 12.º anos de escolaridade tem caráter obrigatório para todos os alunos internos e autopropostos.
Muita Atenção:

20 — Os alunos internos e autopropostos que faltarem à 1.ª fase dos exames finais nacionais, não são admitidos à 2.ª fase.

21 — Os alunos que realizaram provas na 1.ª fase podem ser admitidos à 2.ª fase dos exames finais nacionais desde que:
a) Não tenham obtido aprovação nas disciplinas em que realizaram exames finais nacionais na 1.ª fase — inscrição automática na 2.ª fase;
b) Pretendam realizar melhoria de classificação em qualquer disciplina realizada na 1.ª fase, no mesmo ano letivo — inscrição obrigatória na 2.ª fase.
22 — Os prazos de inscrição para admissão aos exames finais nacionais do ensino secundário decorrem nos seguintes períodos:
1.ª Fase:    Prazo normal — de 23 de fevereiro a 2 de março de 2012;
2.ª Fase:    Prazo normal — 10 e 11 de julho de 2012.
Calendário dos Exames Nacionais




9 de fevereiro de 2012

Rebatimentos de Planos Projetantes - Tetraedro

Represente pelas suas projeções um Tetraedro, situado no primeiro diedro, de acordo com os seguintes dados
A Face [ABC] é horizontal ; 
O vértice “A” tem 6 de abcissa 2 de afastamento e pertence ao b13;
O vértice mais à direita é o ponto B (1;1;2)
Para aceder ao conteúdo interativo clique na imagem
Clique com o botão direito do rato para gravar
 Esta exemplificação interativa do rebatimento de um plano vertical como método auxiliar para determinar a Verdadeira Grandeza da "altura" do tetraedro foi elaborada pelo professor Pedro Sousa.

Construção de Sólidos I





Secções de Sólidos - Ensaios de Coposição



 Atividade de construção e secção de sólidos promovida pelo professor António Machado

8 de fevereiro de 2012

Rebatimentos de Planos Projetantes - Figura Plana

Represente pelas suas projeções um Pentágono [ABCDE]
situado num Plano Vertical, com Centro no ponto O (-2;5;5) e vértice A(0;1;4)



Para aceder ao modelo interativo clique na imagem.

Esta exemplificação interativa do rebatimento de um plano vertical como método auxiliar para representar um pentágono numa determinada posição foi elaborada pelo professor Pedro Sousa.

29 de janeiro de 2012

Exercícios para esta semana:

10.º Ano
Explicação: http://www.paraescolar.pt/geometria-descritiva-10  - Consultar 1,2,3 e 5,6,7

Exercícios e Teoria: Fazer o download do PDF.
Consultar a partir da pagina 20, tentar resolver os exercícios e confrontar com as resoluções:
http://www.exames.org/index.php?option=com_docman&task=doc_download&gid=2674&Itemid=45


11.º Ano
Explicação: http://www.paraescolar.pt/geometria-descritiva-11  -  Consultar 7 e tentar resolver semelhantes

Consultar e tentar resolver os exercícios de Ângulos e Secções em:
http://www.veraviana.net/diedresolvidos.html

1 de dezembro de 2011

Construção de Sólidos I

 



Teste GDA II - 1.2 - 11.º 12

Enunciado Versão A
Enunciado Versão B

1.     Determine a distância d entre os planos paralelos a e b.
- o plano
a contém uma reta horizontal, n, que intersecta o plano frontal de projeção no ponto Fn (0; 0; 8) e cuja projeção horizontal faz um ângulo de 60º (de abertura a direita) com o eixo x;
- o plano
b contém uma reta obliqua b, cujos traços nos planos de projeção são os pontos Hb (3; 4; 0) e Fb (-3; 0; 6). 

2.     Desenha as projeções de um quadrado [ABCD], pertencente a um plano oblíquo a.
- o centro do quadrado é o ponto O (-6; 3; 3,5)
- os traços do plano fazem, ambos, ângulos de 45º(abertura para a direita) com o eixo x
- uma das diagonais é frontal
- o vértice A está no plano frontal de projeção

3.     Represente um cone de revolução de base frontal, situado no 1º diedro, de acordo com os dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a sombra própria do cone e a sua sombra real projetada nos planos de projeção.
Represente, a traço interrompido, as partes invisíveis da separatriz e do contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite clara e uniforme
- a base tem centro no ponto 0 (3; 2,5; 7) e 3 cm de raio;
-  o vértice V do cone tem 10 de afastamento.

3.     Represente uma pirâmide triangular regular, de vértice V, situada no 1º diedro e com a base [ABC] paralela ao plano frontal de projeção, de acordo com os dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a sombra própria da pirâmide e a sua sombra real projetada nos planos de projeção.
Represente a traço interrompido as arestas invisíveis e a parte invisível do contorno da sombra projetada.

Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite clara e uniforme
- o vértice A tem -3,5 de abcissa, 7 de afastamento e 1 de cota;
- o vértice V pertence ao plano frontal de projeção, tem abcissa nula e 4 de cota.

4.     Represente pelas suas projeções um cilindro de revolução, de acordo com os dados abaixo apresentados.

Utilizando a direção luminosa convencional, determine a sombra própria do cilindro e a sua sombra real nos planos de projeção.

Identifique, a traço interrompido, a parte invisível da linha separatriz de luz/sombra do sólido, na sombra própria, e as partes ocultadas do contorno da sombra projetada.

Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite, clara e uniforme.

- as bases são frontais;
- o ponto O (4; 8; 7) é o centro de uma das bases;
- a base de centro O’ tem 2 de afastamento;
- o raio das bases mede 4 cm
4.     Represente um cubo, situado no 1º diedro, de acordo com os dados abaixo apresentados.
Utilizando a direção luminosa convencional, determine a sombra própria do cubo e a sua sombra real projetada nos planos de projeção.
Identifique, a traço interrompido, as arestas invisíveis e a parte invisível do contorno da sombra projetada.
Identifique as áreas visíveis das sombras própria e projetada, preenchendo-as com uma mancha de grafite clara e uniforme
- a face [ABCD] do cubo é paralela ao plano horizontal de projeção;
- os pontos A e B são dois vértices consecutivos da face [ABCD];
- o vértice A tem abcissa nula, 5 de afastamento e 2 de cota;
- o vértice B tem 4 de abcissa e 3 de afastamento.

21 de novembro de 2011

Novos quadros de Ardósia :-)

12 de novembro de 2011

Exames 2012 - Informações GAVE

Foram disponibilizadas pelo GAVE as informações relativas aos próximos Exames Nacionais em:

Aparentemente, no exame de Geometria Descritiva A, não há alterações consideráveis no que refere à estrutura da prova, ou seja "As provas desta disciplina disponíveis em www.gave.min-edu.pt exemplificam, de um modo geral, os tipos de itens das provas a realizar em 2012."

Há um ajuste no que respeita aos critérios de classificação (antes os parâmetros D e E quantificavam um único parâmetro E de 5 pontos).
Quanto ao parâmetro E penso que o Ministério da Educação deveria elucidar o que considera "convenções gráficas" ... a pseudo "projeção" 0, a necessidade de assinalar todos os pontos nas sombras, a indicação de uma VG, etc. 
Quanto ao parâmetro E penso que a "qualidade expressiva dos traçados"  deveria ser incluída no parâmetro D e quanto ao rigor, este deveria ser quantificada a margem de erro como por exemplo 3% ou  2%, mas para isso deveria ser disponibilizada uma resolução modelo 100% rigorosa, à escala, em acetato, para que o rigor seja avaliado com efetivo rigor.

A – Tradução gráfica dos dados .......................................................................... 5 a 10 pontos
B – Processo de resolução ................................................................................... 20 a 30 pontos
C – Apresentação gráfica da solução .................................................................. 10 a 20 pontos
D – Observância das convenções gráficas usuais aplicáveis .............................. 3 pontos
E – Rigor de execução e qualidade expressiva dos traçados .............................. 3 pontos

7 de novembro de 2011

Teste GDA I - 1.1


1.     Represente os seguintes pontos e indique, com siglas, os locais onde se encontram. (siglas: PHp, PFp, b13, b24, ID, IID, IIID, IVD)
A(11; -2; 6)       B(8; 6; -4)         C(5; -7; -7)       D(1; 3; -3) 
E(-3; 5; 5)         F(-7; 0; -6)        G(-9; -4; 4)       H(-11; 7; 0)



2.     Represente pelas suas projeções os seguintes pontos:
A com 10 de abcissa, 5 de afastamento e pertencente ao b24
B simétrico de A em relação ao plano frontal de projeção.
C com 6 de abcissa,4 de cota e pertencente ao b13
D simétrico de C em relação ao plano horizontal de projeção.
E com 2 de abcissa -5 de afastamento pertencente ao b13
F com -1 de abcissa 7 de cota e pertencente ao PFp
G com -4 de abcissa no 3.º diedro, distando 3 do PFp e 6 do PHp
H com -7 de abcissa 5 de afastamento pertencente ao PHp
I com -10 de abcissa 3 de afastamento e 7 de cota
J simétrico de I em relação ao bissetor dos diedros ímpares



3.     Represente a reta “a” definida pelos pontos A(4;5:6) e B(-4;2;-1)
Determine os seus pontos notáveis. (H,F,Q,I)
Indique o percurso da reta ao longo dos diedros.
Coloque, na reta, um ponto P com -3 de afastamento

4.     Represente, indicando os nomes e caraterísticas, as seguintes retas:
a definida por A(11;4;2) e B(7;4;8) nível
t definida por C(4;7;5) e D(4;0;5) vertical
g definida por U(1;7;3) e V(-3;7;3)-horizontal
n definida por G(-6;7;-5) H(-9;3;-5) frontal
v definida por M(-11;6;6) N(-11;6;1) de topo



5.     No verso deste enunciado (Download o PDF aqui) encontras um sólido em dupla projeção ortogonal e em projeção axonométrica.
Assinala com cores ou com letras um exemplo de cada segmento de reta tipo que estudaste, Horizontal/Topo, Frontal/Vertical e ainda fronto-horizontal.
Procura, no prolongamento de um segmento de reta oblíquo [AV], um traço horizontal e um traço frontal, assinalando respetivamente com a letra H e F em todas as projeções.

Ponto e Reta

6 de novembro de 2011

Teste GDA II - 1.1 - 11.º 12

1.     Represente o ponto “I” de intersecção da reta r com o plano a
O plano a é definido pela sua reta de maior declive d que contém os pontos C(-10;1;5) e D(-7;7;2)
A reta r contém o ponto R (0;2;4) e é paralela ao plano q e ao bissetor dos diedros ímpares b13
O plano q contém o ponto Q (10;4;2) e os seus traços, horizontal e frontal, fazem respetivamente ângulos de 55º e 35º, ambos com abertura à esquerda.

2.     Determine a verdadeira grandeza da distância entre o ponto P(3;6;9) e o plano a,
O plano a contém o ponto A(-3;3;3), é perpendicular ao bissetor dos diedros impares b13 e o seu traço horizontal faz um ângulo de 45º ad com o eixo “x”

3.     Represente as projeções de um cubo situado no 1.º diedro com a face [ABCD] contida no plano oblíquo q. (foi alterado para apenas o quadrado da face)
Os traços horizontal e frontal do plano q fazem, respetivamente com o eixo x, ângulos de 60º e 45º, ambos com abertura para a direita e intersectam-se na origem das coordenadas.
O vértice A situa-se no traço frontal do plano e tem 2 de cota

O vértice B tem cota nula e 6 de afastamento.

2 de novembro de 2011

Teste GDA II - 1.1 - 11.º 13


1.     Represente a reta “i” de intersecção do plano a com o plano bissetor dos diedros pares b24.
O plano a contém o ponto A(2;5;2) e é paralelo ao plano q.
O plano q é definido pela sua reta de maior declive d que contém os pontos C(-10;1;4) e D(-7;7;2)

2.     Determine a verdadeira grandeza da distância entre a reta “r” e o plano a,
O plano a contém o ponto A(-3;3;3) es os seus traços, horizontal e frontal, fazem respetivamente ângulos de 45º ad e 30º ad
A reta “r” contém o ponto R(4;8;8), é paralela ao plano a e ao plano bissetor dos diedros ímpares b13
(deve representar todos os dados, nomeadamente as projeções da reta r e os traços do plano a)

3.     Desenhe as projeções de um triângulo equilátero [ABC], contido num plano oblíquo b.
Os traços horizontal e frontal do plano b fazem, respetivamente com o eixo x, ângulos de 60º e 45º, ambos com abertura para a direita e intersectam-se na origem das coordenadas.
O vértice A situa-se no traço frontal do plano e tem 2 de cota

O vértice B tem cota nula e 6 de afastamento.
Resoluções de David Gonçalves

1 de novembro de 2011

Sala 302

29 de outubro de 2011

Relação Reta / Plano

Retas de um plano ou são concorrentes ou são paralelas
Uma reta está num plano se contiver 2 pontos desse plano ou 1 ponto e uma direção (ser paralela a uma reta conhecida do plano)
Verifica nesta pirâmide o referido acima

23 de outubro de 2011

Um pedido a todos os alunos que acabaram o 12º ano nos últimos anos: Há falta de livros escolares no Banco de Livros e há ainda alunos à espera de livros. Juntam o útil ao agradável - limpam as estantes e aproveitam , passam pelo Sá, matam saudades e entregam os livros na Biblioteca

15 de outubro de 2011

Ranking dos Exames Nacionais de 2011

É hoje divulgado em pelo menos 3 jornais, Sol, Expresso e Público e na generalidade dos canais informativos de televisão, um suposto "ranking" das escolas no que respeita aos resultados dos exames nacionais. 
A maioria desta informação divulgada é falsa ou pelo menos pouco rigorosa.
Fico novamente surpreendido com estas interpretações sensacionalistas elaboradas por supostos profissionais da comunicação social que já nos habituaram a duvidar de tudo o que afirmam.
(basta comparar as listas para verificar que pelo menos uma delas não é séria)
Julgo mesmo que quem escreveu alguns destes artigos revela uma total incompetência para lidar com este assunto.
Mas o que mais me espanta é que, novamente, os dados que são fornecidos aos meios de comunicação não são simultaneamente divulgados publicamente na DGIDC na estatística ENES, tornando impossível rebater qualquer notícia menos correta por eles emitida. 
Claro que logo que esta instituição se digne a facultar os dados a todos os que a suportam pelos impostos que pagam eu elaborarei a minha interpretação mais ou menos válida, mas certamente com  melhores referências e fundamentos que os jornalistas nada referem nem evidenciam.
As referências podem ser consultadas clicando nas imagens: