17 de julho de 2013

Proposta de Resolução Exame Nacional 2013 - 2.ª fase - Q1



Determine as projeções da reta passante s, perpendicular à reta r no ponto A.


Dados
− a reta r é passante e está definida pelo ponto A com 2 de abcissa e 3 de cota e pelo ponto B do eixo x com 7 de abcissa;
− a projeção horizontal da reta r faz um ângulo de 50°, de abertura para a direita, com o eixo x.


 

Pelo ponto “A” passamos uma reta horizontal “n” perpendicular à reta “r”
Colocamos um plano teta contendo a reta anterior (n) e também ele perpendicular à reta “r”
Todas as retas do plano teta são ortogonais à reta “r”, as que passam em "A" são perpendiculares a "r"
Como se pretendia uma reta “s” passante bastou encontrar o ponto do plano teta que pertence ao eixo dos “x” que, conjuntamente com o ponto “A” definem a reta “s” pretendida


Como se pretendia uma reta “s” passante perpendicular a uma “r” também passante, logo consideramos um plano passante.
Assim, rebatemos (ou melhor, rodamos) esse plano levando o ponto “A” e a reta ”r” para o plano frontal de projeção.
Com estamos, agora, em verdadeira grandeza, podemos fazer passar a reta “s” pelo ponto “A” perpendicularmente à reta “r” (em verdadeira grandeza, claro)
Encontramos assim o ponto do eixo do “x” da reta “s”, e como este se situa na charneira, acaba por ser válido também para as projeções, definindo ele próprio, com o ponto “A” a pretendida reta “s”
___________
Sobre os critérios de classificação:
Não sei o que vale uma das projeções de uma reta perpendicular em "A" à reta "r" sem a representação da outra projeção. É mesmo um "nosense" se as projeções dessa reta forem ambas perpendiculares às projeções da reta "r" deveriam ser cotadas as duas projeções, apenas uma ou nenhuma ? (na minha vontade nenhuma já que a reta não é realmente perpendicular)

Proposta de Resolução Exame Nacional 2013 - 2.ª fase - Q2



Determine, graficamente, a amplitude do ângulo formado pelos planos δ e θ.
Dados
o plano δ é vertical, contém o ponto M do eixo x com –3 de abcissa e faz um ângulo de 60°, de abertura para a direita, com o Plano Frontal de Projeção;
o plano θ é de topo, contém o ponto N do eixo x com 3 de abcissa e faz um ângulo de 60°, de abertura para a esquerda, com o Plano Horizontal de Projeção.



Por um ponto (qualquer) “A” passamos uma reta horizontal “n” perpendicular ao plano delta e uma segunda reta frontal “f” perpendicular ao plano teta.
Para evitar que nos venham falar de “falta de notações” em vez de rebater optamos por rodar o ponto “H” da reta “f” em torno da reta “n” para uma posição de cota igual à mesma reta tornando assim o ângulo na sua posição de verdadeira grandeza.

Claro que rebater é exatamente o mesmo que rodar, mas há quem sinta a necessidade da representação de um plano :-) no primeiro caso


Nesta proposta optamos por representar um plano alfa perpendicular aos dois planos delta e teta.
Encontramos as retas “a” e “b”  resultantes da intersecção desse plano alfa com os anteriores.
Rebatemos o plano alfa conjuntamente com as retas “a” e “b” obtendo assim a verdadeira grandeza do ângulo ou melhor, da amplitude do diedro … ou melhor, … desta o pedido foi mesmo a amplitude do ângulo :-) Ok.