Determine as projeções da reta passante s, perpendicular à reta r no ponto A.
Dados
− a reta r é passante e está definida pelo ponto A com 2 de abcissa e 3 de cota e pelo ponto B do eixo x com 7 de abcissa;
− a projeção horizontal da reta r faz um ângulo de 50°, de abertura para a direita, com o eixo x.
Pelo ponto “A” passamos uma reta horizontal “n” perpendicular à reta “r”
Colocamos um plano teta contendo a reta anterior (n) e também ele perpendicular à reta “r”
Todas as retas do plano teta são ortogonais à reta “r”, as que passam em "A" são perpendiculares a "r"
Como se pretendia uma reta “s” passante bastou encontrar o ponto do plano teta que pertence ao eixo dos “x” que, conjuntamente com o ponto “A” definem a reta “s” pretendida
Como se pretendia uma reta “s” passante perpendicular a uma “r” também passante, logo consideramos um plano passante.
Assim, rebatemos (ou melhor, rodamos) esse plano levando o ponto “A” e a reta ”r” para o plano frontal de projeção.
Com estamos, agora, em verdadeira grandeza, podemos fazer passar a reta “s” pelo ponto “A” perpendicularmente à reta “r” (em verdadeira grandeza, claro)
Encontramos assim o ponto do eixo do “x” da reta “s”, e como este se situa na charneira, acaba por ser válido também para as projeções, definindo ele próprio, com o ponto “A” a pretendida reta “s”
___________Sobre os critérios de classificação:
Não sei o que vale uma das projeções de uma reta perpendicular em "A" à reta "r" sem a representação da outra projeção. É mesmo um "nosense" se as projeções dessa reta forem ambas perpendiculares às projeções da reta "r" deveriam ser cotadas as duas projeções, apenas uma ou nenhuma ? (na minha vontade nenhuma já que a reta não é realmente perpendicular)