11 de dezembro de 2010

GDA II - Teste 1.2

Enunciados:  Versão A  Versão B  Versão C


Questão 1 Paralelismo e Perpendicularidade


Determine os traços do plano  que contém o ponto B (–4;3;4) e é paralelo ao plano .
Dados
– o plano  é definido pelas rectas a e b;
– a recta a contém o ponto A (3;5;5);
– as projecções, horizontal e frontal, da recta a fazem, com o eixo x, ângulos de 45º, de abertura para a direita, e de 30º, de abertura para a esquerda, respectivamente;
– a recta b pertence ao plano bissector dos diedros ímpares, (β1,3), e a sua projecção horizontal faz, com o eixo x, um ângulo de 35º de abertura para a direita;

Questão 2 Figuras Planas situadas em qualquer tipo de plano (rebatimento)

Determine as projecções de um pentágono regular [ABCDE], de acordo com os seguintes dados:
- O pentágono está contido no plano oblíquo ;
- O traço frontal do plano plano  faz um ângulo de 45º (ad) e intersecta o eixo dos X num ponto com 5 de abcissa
-.O ponto O(0;4; 3) é o centro do polígono.
- O vétice A situa-se sobre a mesma recta de maior inclinação que o centro “O” e tem 1 de afastamento



Questão 3 Sombras de sólidos
Represente, pelas suas projecções, uma pirâmide quadrangular regular, de acordo com os dados abaixo apresentados.
Determine a sombra própria do sólido e a sua sombra real nos planos de projecção, utilizando a direcção luminosa convencional.
Identifique, a traço interrompido, a parte invisível da linha separatriz de luz/sombra, na sombra própria, e a parte ocultada do contorno, na sombra projectada.
Identifique as áreas visíveis das sombras própria e projectada, preenchendo-as a tracejado ou com uma mancha de grafite, clara e uniforme.
Nota: Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às respectivas projecções da direcção luminosa, nas áreas de sombra projectada.
– a base [ABCD] está contida num plano horizontal;
– o centro da base é o ponto O, que pertence ao plano bissector dos diedros ímpares (β1,3) e tem 2 de abcissa e 7 de afastamento;
- o vértice “A” da base tem 6 de abcissa e 6 de afastamento
– o vértice do sólido é o ponto V, com 1 de cota.

Questão 1 Paralelismo e Perpendicularidade ou Distâncias


Determine os traços do plano  que contém o ponto B e é paralelo ao plano .

– o plano  é definido pelas rectas a e b;
– a recta a contém o ponto A (-3;5;5);
– as projecções, horizontal e frontal, da recta a fazem, com o eixo x, ângulos de 45º, de abertura para a esquerda, e de 30º, de abertura para a direita, respectivamente;
– a recta b pertence ao plano bissector dos diedros ímpares, (β1,3), e a sua projecção frontal faz, com o eixo x, um ângulo de 35º de abertura para a esquerda;
– o plano contém o ponto B (4;3;4).


Questão 2 Figuras Planas situadas em qualquer tipo de plano (rebatimento)


Determine as projecções de um quadrado [ABCD], de acordo com os seguintes dados:
- O quadrado está contido no plano oblíquo ;
- O traço horizontal do plano plano  faz um ângulo de 45º (ae) e intersecta o eixo dos X num ponto com -5 de abcissa
-.O ponto O(0;3;4) é o centro do polígono.
- O vétice “A” situa-se sobre a mesma recta de maior declive que o centro “O” e tem 1 de cota.

 
Questão 3 Sombras de sólidos


Represente, pelas suas projecções, uma pirâmide pentagonal regular, de acordo com os dados abaixo apresentados.
Determine a sombra própria do sólido e a sua sombra real nos planos de projecção, utilizando a direcção luminosa convencional.
Identifique, a traço interrompido, a parte invisível da linha separatriz de luz/sombra, na sombra própria, e a parte ocultada do contorno, na sombra projectada.
Identifique as áreas visíveis das sombras própria e projectada, preenchendo-as a tracejado ou com uma mancha de grafite, clara e uniforme.
Nota: Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às respectivas projecções da direcção luminosa, nas áreas de sombra projectada.
– a base [ABCDE] está contida num plano frontal;
– o centro da base é o ponto O, que pertence ao plano bissector dos diedros ímpares (β1,3) e tem 2 de abcissa e 7 de afastamento;
- o vértice “A” da base tem 6 de abcissa e 6 de cota
– o vértice do sólido é o ponto V, com 1 de afastamento.


Sem comentários: