Represente uma pirâmide hexagonal oblíqua de base frontal, situada no 1.º diedro, de acordo com os dados abaixo apresentados.
- Utilizando a direcção luminosa convencional, determine a sombra própria da pirâmide e a sua sombra real projectada nos planos de projecção.
- Identifique, a traço interrompido, as arestas invisíveis e a parte invisível do contorno da sombra projectada.
- Identifique as áreas visíveis das sombras própria e projectada, preenchendo-as a tracejado ou com uma mancha de grafite clara e uniforme.
(Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às respectivas projecções da direcção luminosa, nas áreas de sombra projectada.)
Dados
– a base da pirâmide é um hexágono regular (situado num plano frontal), e tem como centro o ponto O (5; 5; 7);
– o ponto A é um dos vértices da base, tem 8 de abcissa e 3 de cota;
– o vértice da pirâmide é o ponto V (2; 11; 9).
Sem comentários:
Enviar um comentário