Critérios (os critérios de correcção permitem ficar com uma ideia de qual será o resultado)
Proposta de Resolução (Esta proposta é apenas uma forma possível de resolver a prova) consulta outras em: Aproged ou Elísio Silva ou Vera Viana
Caros Artistas.
Não é possível responder a todos os comentários de momento.
Peço-vos que consultem os Critérios de Correcção, será fácil terem uma ideia.
PROVA:1. Determine as projecções da recta de intersecção, i, dos planos oblíquos α e β, que contêm o mesmo ponto do eixo x.
Dados
– os traços do plano α intersectam o eixo x no ponto com –1 de abcissa e fazem, ambos, ângulos de 60º, de abertura para a direita, com esse mesmo eixo;
– o plano β é definido pelo seu traço horizontal e pela recta b;
– o traço horizontal faz um ângulo de 20º, de abertura para a direita, com o eixo x;
– a recta b é de perfil passante e contém o ponto B (2; 6).

Como os dois planos continham o mesmo ponto do eixo dos X bastou procurar o segundo ponto comum aos 2 planos.
Assim, coloquei 2 rectas de nível, "a" do plano alfa e "n", do plano beta, a passar em "B" e paralela ao traço horizontal do plano beta.
O segundo ponto foi assim obtido pela concorrência dessas duas rectas.
2. Determine, graficamente, a amplitude do ângulo formado pelas rectas r e s.
Dados– a recta r é paralela ao plano bissector dos diedros pares (β2,4);
– a projecção frontal da recta r faz um ângulo de 30º, de abertura para a esquerda, com o eixo x;
– o ponto F, traço frontal da recta r, tem 8 de abcissa e 8 de cota;
– a recta s é concorrente com a recta r no ponto P, com 3 de cota;
– as projecções da recta s são perpendiculares às projecções homónimas da recta r.

Optamos como eixo de rabatimento pelo traço horizontal do plano definido pelas duas rectas e rebatemos o ponto comum "P"
3. Represente, pelas suas projecções, um cone de revolução, de acordo com os dados abaixo
apresentados. Determine a sombra própria do cone e a sua sombra real nos planos de projecção, utilizando a direcção luminosa convencional.
Identifique, a traço interrompido, a parte invisível da linha separatriz de luz/sombra, na sombra própria, e a parte ocultada do contorno, na sombra projectada. Identifique as áreas visíveis das sombras própria e projectada, preenchendo-as a tracejado ou com uma mancha de grafite, clara e uniforme.Nota: Se optar pelo tracejado, deverá fazê-lo com linhas paralelas ao eixo x, nas áreas de sombra própria, e com linhas perpendiculares às respectivas projecções da direcção luminosa, nas áreas de sombra projectada.Dados– a base está contida no plano frontal φ e tem 4 cm de raio;
– o centro da base é o ponto O, que pertence ao plano bissector dos diedros ímpares (β1,3) e tem 2 de abcissa e 8 de afastamento;
– o vértice é o ponto V, com 1 cm de afastamento.

A 3.ª Questão foi também um exercício símples, apesar de não concordar com certos termos do enunciado.
Determinamos o ponto "I" que corresponde à sombra virtual do vértice no plano da base do cone. Assim determinamos os pontos de tangência e portanto a separatriz e sombra própria.
A sombra projectada deu um pouco de trabalho já que tinha uma longa parte curva.
4. Construa uma representação axonométrica oblíqua (clinogonal), em perspectiva cavaleira, de um sólido, situado no 1.º triedro, composto por dois prismas triangulares regulares, de acordo com os dados abaixo apresentados.
Ponha em destaque, no desenho final, apenas o traçado das arestas visíveis do sólido resultante.
Dados
Sistema axonometrico:
– o eixo axonométrico y faz ângulos de 140º e de 130º com os eixos axonométricos x e z, respectivamente;
– as projectantes fazem ângulos de 55º com o plano axonométrico.
Nota: Considere os eixos orientados em sentido directo: o eixo z, vertical, orientado positivamente, de baixo para cima, e o eixo x, orientado positivamente, da direita para a esquerda.Prismas:
– os dois prismas têm uma aresta lateral comum e as suas bases são paralelas ao plano coordenado frontal zx;
– ambos os prismas têm 9 cm de altura.
Prisma triangular regular 1:
– os pontos A (8; 12; 0) e B (0; 12; 0) definem uma aresta da base de maior afastamento.
Prisma triangular regular 2:
– o segmento [AA’] é a aresta lateral comum aos dois prismas;
– a face oposta a essa aresta lateral é paralela ao plano coordenado horizontal xy;
– a aresta da base mede 4 cm.

Rebatemos o "Y" e não necessitamos de determinar a direcção de afinidade já que as figuras planas a construir se posicionavam paralelas ao plano axonométrico.